

60 GHz:

What You Need to Know About 802.11ad and 802.11ay

Jason D. Hintersteiner, CWNE #171 Director of Business Development WLPC 2019

60 GHz is NOT dead

© 2019

60 GHz 802.11ad Standards

- Key 802.11ad Applications
 - Point-to-(multi)point
 - Room-level Wi-Fi
- Key 802.11ad Specifications
 - DMG: <u>Directional</u> Multi-Gigabit PHY
 - Data rates: Up to 8 Gb/s
 - PHY Type: Single Carrier PHY (OFDM part of original standard but not implemented)

Beamforming training identifies sectors in which to best transmit between AP and STA

- Phased antenna arrays for real-time beamforming with directional antennas
- Single stream (SISO only, no MIMO or MU-MIMO)
- Generally limited to one AP and up to 8 client devices (STA)

60 GHz Channels

- Original range: 57-66 GHz (4 channels of 2.16 GHz each)
- Extended range: 57-71 GHz (6 channels of 2.16 GHz / channel)
 - Only available in USA
 - May be opened up in Canada & EU in near future
- Only channels 2 & 3 (59.4 63.72 GHz) available worldwide

 $https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1ma220/1MA220_3e_WLAN_11ad_WP.pdf$

60 GHz Why is Range So Poor?

- Molecular oxygen absorbs significant amounts of energy in the 54 GHz – 66 GHz range
- Attenuation from water vapor increases as frequency increases
- Effects are negligible at <10 GHz; we are used to ignoring this in 2.4 GHz & 5 GHz
- Results for 60 GHz PTP/PTMP:
 - Significantly more limited range in air

• Large degradation in link performance from weather effects (e.g. rain, snow, fog)

60 GHz 802.11ad PHY

https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1ma220/1MA220_3e_WLAN_11ad_WP.pdf

- Preamble: Consists of short training field (STF) and channel estimation (CE) field for packet detection, automatic gain control, and frequency and timing offsets
- Header: Modulation and coding scheme for data, length of data field, checksum
- Data: Variable length field (1 to 262,143 octets) containing the Layer 2 payload
- TRN: Beamforming training field for transmitter or receiver

60 GHz 802.11ad MCS Rates

• Modulation Types

- BPSK
- QPSK
- 16 QAM
- LDPC Coding
 - 1/2
 - 5/8
 - 3/4
 - 13/16
- Control PHY
 - Low SNR operation for beamforming training
- Single Carrier PHY
 - Intended for mobile client devices
 - Low complexity
 - Power efficient: maximizes battery life
 - Lower throughputs than OFDM

MCS Index	Modulation	Coding	Data Rate (Mbps)	Notes
MCS0	DBPSK	1/2	27.5	Control PHY
MCS1	$\pi/2$ BPSK	1/2	385	Single Carrier Phy
				2 repeated frames
MCS2	$\pi/2$ BPSK	1/2	770	Single Carrier Phy
MCS3	$\pi/2$ BPSK	5/8	962.5	Single Carrier Phy
MCS4	$\pi/2$ BPSK	3/4	1155	Single Carrier Phy
MCS5	$\pi/2$ BPSK	13/16	1251.25	Single Carrier Phy
MCS6	$\pi/2$ QPSK	1/2	1540	Single Carrier Phy
MCS7	$\pi/2$ QPSK	5/8	1925	Single Carrier Phy
MCS8	$\pi/2$ QPSK	3/4	2310	Single Carrier Phy
MCS9	$\pi/2$ QPSK	13/16	2502.5	Single Carrier Phy
MCS10	π/2 16 QAM	1/2	3080	Single Carrier Phy
MCS11	$\pi/2$ 16 QAM	5/8	3580	Single Carrier Phy
MCS12	$\pi/216$ QAM	3/4	4620	Single Carrier Phy

60 GHz

802.11ad PHY: Beacon Interval

- Beacon Header Interval (BHI) all at MCSO
 - Replaces single beacon to transmit multiple beacons in different directions
 - Beacon Transmission Interval (BTI): Series of directional beacon frames
 - Association Beamforming Training (A-BFT): Beamforming training for individual STA (8 slots in 802.11ad, 40 slots in 802.11ay)
 - Announcement Transmission Interval (ATI): Management frame exchange between AP and beam-trained STA (reduces BTI size so management info only transmitted to beamforming-trained stations)
- Data Transmission Interval (DTI)
 - Contention-based access periods (CBAP), consistent with standard 802.11 ECDA
 - Scheduled service periods (SP), such as TDMA or Polling (e.g. PCF)

https://ieeexplore.ieee.org/document/8088544

60 GHz 802.11ay Enhancements

EDMG: Enhanced Directional Multi-Gigabit PHY

- Potential data rates: 20 40 Gbps (originally pitched as 100 Gbps)
- Channel bonding / aggregation
 - Up to 4 bonded channels (8.64 GHz channel)
 - Either adjacent (bonding) or non-adjacent (aggregation)
- MIMO and MU-MIMO (downstream)
- Up to eight spatial streams in spec (likely up to four in real chipsets)
- OFDM: 64 QAM and 256 QAM support
- Hybrid analog/digital beamforming
- Higher density client load (up to 40 clients w/ bonded channels)
- Backward compatible to 802.11ad
- Claimed Range: 300 500m (< 1 mile)

60 GHz 802.11ay PHY Structure

- Legacy Portion (non EDMG)
 - L-STF: Legacy Short Training Field
 - L-CEF: Legacy Channel Estimation Field
 - L- Header: Legacy Header (some re-definition of bits) (transmission duplicated on each bonded channel)
- EDMG Portion
 - EDMG Header A: Bandwidth, MCS, # bonded channels, # streams (transmission duplicated on each bonded channel)
 - EMMG-STF / CEF: utilized for MIMO / channel bonding (transmitted in bonded and/or MIMO mode)
 - EDMG Header B: MU-MIMO (transmitted in bonded and/or MIMO mode)
- TRN: Training Field for beamforming

© 2019

60 GHz 802.11ay MAC

- Modulation Types
 - BPSK
 - QPSK
 - 16 QAM
 - 64 QAM
 - 256 QAM
- LDPC Coding
 - 1/2
 - 5/8
 - 3/4
 - 13/16
 - 7/8 (added in 802.11ay)

- Other enhancements
 - Additional beamforming training slots in secondary channels to support higher density of clients
- Transmit Opportunities (TXOP)
 - Needed for MIMO and MU-MIMO operation
 - Binds channel with RTS or CTS-to-Self
- Beamforming training
 - MIMO / MU-MIMO
 - Asymmetric links

60 GHz

Takeaway: Benefits and Issues in PTP/PTMP

- Primary Benefits
 - Very high bandwidth from large channel sizes
 - Virtually no interference, even from nearby links, due to high directionality from phased antenna arrays
- Primary Issues: Limited Link Range and Link Stability
 - High attenuation due to oxygen absorption
 - Variable attenuation due to weather effects (can lose the link in bad weather)
 - Achieving and maintaining link alignment
 - Small, high gain antenna arrays
 - Very limited angular beamwidth
 - Real-time beamforming

Practical limit of link is ~ 1000 feet / 300 m. Good for highbandwidth/short-distance or interference-free/short distance.